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t meoretical Physics Division, Nankai Institute of Mathematics, lianjin 300071, People’s 
Republic of China 
t Depmtment of Physics, Hunan N o d  University. Hunan 410006, People’s Republic of 
China 

Received 27 June 1994 

Abstract A path intepl  formulation in the representation of new coherent states for the Lie 
superalgebra osp(l/Z. R) is introduced By the use of the completeness relation of the new 
coherent states. a path inlegmi expression for the transition amplitude between WO osp(ll2. R )  
new coherent states for a Hamiltonian which is linear in the generators of the superalgebra are 
obtained. In the classical limit the equations of motion for the system are derived. 

It is well known that both path integral [I] and coherent states (css) 121 have played 
major roles in the study of quantum mechanical systems, particularly for establishing the 
correspondence between classical and quantum physics. Radcliffe [3] first proposed cs for 
the SU(2) group, then Perelomov [4] and Gilmore 1.51 generalized the construction of css 
to arbitrary Lie groups. In the past few years, much attention has been paid to the study of 
the generalized css for Lie superalgebras [Gl l ] .  

The use of css to provide an alternative method of obtaining the phasespace path 
integral, and hence the Hamilton equation of motion, was first proposed by Klauder 
(121. This path integral technique has been extended to include a formulation in terms 
of generalized css for many other Lie (super)algebras [8,13,14]. The cs path integral 
formalism has also found application in the study of Berry’s phase [ 151 and the Jaynes- 
Cummings model in quantum optics [16,17]. In the past decade, there have been hints 
of physically realized supersymmetry in quantum optics [NI, nuclear [19] and many- 
body physics [ZO]. Therefore it is a worthwhile effort to study the path integral for Lie 
superalgebras. 

As is well known, the Lie superalgebra osp(l/Z, R )  is one of the most important 
and the simplest Lie superalgebras. The authors of [6,7] introduced osp(II2,R) css by 
using Perelomov’s definition of css for arbitrary groups 141. In [21], starting with the 
boson realization of the osp(l/2, R )  superalgebra, we presented a new kind of css for the 
osp(l/2, R),  and studied the D-algebra differential realization [22] of the osp(l/2, R) in the 
new cs representation. One of the interesting features of the osp(l/2, R )  new CSs is that 
they can encompass the Glauber css, su(l.1) css and squeezed states in quantum optics 
within a common formalism. In this letter, we intend to study the path integral formalism 
of the osp(l/2, R )  new css. In section 2, we present a brief summary of the results for the 
osp(l/Z, R )  new CSs. In section 3 we study the path integral formulation of the transition 
amplitude between two osp(l/2, R) new c s s .  Section 4 is devoted to deriving the classical 
equations of motion for the system. 
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We now consider new coherent states for osp( l j2 ,R)  superalgebra. The Lie 
superalgebra osp(l/2, R) has five generators which satisfy the following commutation and 
anticommutation relations: 

[KO, KI] = fK* [K+, K-] = -2Ko (1) 

[KO, F d  = *fF* [K+, F+I = 0 [K+, F+I = TF* (2) 

{Fi, Fi) = K* (F+, F-)= KO (3) 

which contains a subalgebra su(l,1) spanned by K+. K- and KO as its even part. 

realization: 
It is easy to check that these osp(l/2, R) generators admit the following boson 

K+ = ;atz K- = ?a ’ KO = ;(a’. + f) (4) 

F - ‘  F - = p  1 (5) 

where [a, at] = 1, and a and at are the annihilation and creation operators of a boson, 
respectively. 

Making use of (4) and (5 ) ,  one can obtain the number representation of the superalgebra: 

(6) 

(7) 

+ - p 

~~ 

K+In) = $/(n + l)(n + 2)ln + 2) ~ - l n )  = &‘-ln - 2) 

Koln) = i ( n  + $\n) F+ln) = i & T i l n  + I )  ~ - l n )  = $ f i l n  - 1). 

A new cs of the osp(l/2, R) is defined as 

IW) = S ( B ) D ( W )  (8) 

where (Y and p are two arbitrary complex numbers, and the operators S(p) and D(a) are 
defined by 

S(/3) = exp(j3K+ - p’K-)  D(a )  = exp(aF+ - a*F-) (9) 

which correspond to even and odd parts of the superalgebra, respectively. 
S(p)  and D(a)  satisfy the following commutation relation: 

(10) 
ie p = re . D(a)S(p)  = S(p)D(acoshr +(Y*&’ sinhr) 

From (4) to (8), one can anive at the number-state representation of the new CSS, 

where H.(x) is the Hermite polynomial. 
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These css are normalized, i.e., (ap [ ap) = 1, they have the following orthogonality 
relation: 

(a'B' I a@) = A"2(B, B')exp (-~(la12 + 101'1~) + f A ( A  B')[B(f3, f3')az 

+ %a'* + B * @ ,  @')a*Z]} (12) 

with 

A(@, f3') = (cosh r coshr' - ei(B-8') sinh r sinh r')-' (13) 

B(B, B') = e-"sinhr coshr' - e-"'coshrsinhr'. (14) 

These css form an overcomplete Hilbert space, it can be proved that they have the 
following completeness relation, 

where the weight function u(a, f3) is given by 

(16) 

Let us consider a Hamiltonian H acting in a Hilbert space. We shall assume that the 
Hamiltonian can be expanded as a finite polynomial of the generators of the osp(l/2, R )  
superalgebra. The time evolution of the quantum mechanical system is determined by the 
evolution operator: 

1 
U@, f 3 )  = --6(Ref3)G(ImB). 

x 

U(r ' , t )=Texp(  [ [ - $ H ( r ) d r ]  1 (17) 

where T is the Dyson time-ordering operator. 
Following the standard approach, one can factorize the evolution operator as follows: 

U ( t ' , t )  = lim exp - - H ( r ~ ) 6  .' 
N+.c - rQ [I 1 

N 

N+,r+O j= ,  
= l i i  

where 

- t  
V 
- 

The transition amplitude (or propagator) from the coherent state lap) at time t to the 
coherent state la'p') at time t' is given by 

~ ( a ' ,  P', t', a. f3 ,  t )  = (a', B'lU(t', t)laB) (20) 
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with the following defining properties, 

Making use of the resolution of unity of the new c s s  N times, substituting (18) into (20) 
and inserting the completeness relation (15) into each rime interval, we can rewrite the 
transition amplitude as follows: 

where we have used the symbol, 

Through a tedious but straightforward evaluation, the first term in the exponent on the 
right-hand side of equation (22) can be expressed as 

In(aj,,9j I aj-lp, - 1) = i(ajAa; -aJAaj  -isinh2rjA8j) 

- f (2eie Arj + i sinh rj cosh rjeiBd A8j)a,!2 

+ (2Arje-"l - i sinh rj cosh rje-''] (24) 

where Aa, aj -ai-], Aa; = a; - a;-l and A@, 8, - and we have taken 

Substituting (24) into (22), we can obtain the final expression for the transition amplitude 
B .  -r&. 

I -  I 

which can be written as the formal functional integral: 

K(a',,9',r';a.,9,t) = /"D2aD2pexp(kS) (25) 

with the following action 

S = ~ f ' L ( a ( ~ ) , ~ ( ~ ) , a * ( r ) , ~ * ( r ) ,  r ( r ) ,  t ( r ) ,8 ( r ) ,e ( r ) )dr  (26) 

where the Lagrangian is defined by 

L = -(aor* -a&*) - - smh r8  t h(a*2e'e - a2e-")(ir - ~2 sinhr coshre) - X(a ,  p) .  i f t .  h .  2 .  

2 2 
(27) 
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Next we investigate the classical dynamics of the system governed by the Hamiltonian 
H. The classical limit is now understood as the case in which A is extremely small compared 
with the action S in equation (26), the main contribution to the transition amplitude comes 
from the path which makes the action stationary with fixed endpoint CY = a(r), CY' = d(t'), 
r = r ( t ) ,  r' = r(t'), 0 = 0(r) and 0' = 0(t'): 

d ac d ac 0 = SS = [[E - ;i; (41 Sa: + [ g - ;ii (41 6U* 
+ [ - g (g)] Sr + [ 2 - ($)I 801 dr. (28) 

As the variations 8a, 6a*, Sr and 60 are independent and arbitray, we obtain the 
Euler-Lagrange equations: 

0. 

Using the expression (27), we can rewrite the above equations of motion as: 

d! = -a*(i - ib sinhr coshr)e-" - 

&* = -a(t + i0 sinhr coshr)eie + - (") 
f i  au 

(33) 

(34) 

(35) 
. r =  21m(cr&ei8) + (i6 + 82sinhrcoshr)Im(or2e-i8) - (l/h)(W/a0) 

i Im(orze-w) - sinh r cosh r 

. 2ih(a&e-") - (l/h)(ax/ar) 
0 =  

sinh r coshr - 0 1 ~ e ' ~  

In particular, when r = 0 and 0 = 0, the above equations reduce to 

, i ax 
h aCY* = (37) 

'(38) 

which are just the classical dynamical equations of the system for Glauber coherent 
states [16]. 
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When one takes 01 = 0, equations (35) and (36) become 
1 ax e = -  , 

h sinh r cosh r 

h sinh r cosh r % 
1 ax r =  

which are the classical dynamical equations of the system for the su(1, 1) coherent states 
from the boson realization (4). 

We now consider the classical dynamical equations of motion (33) to (36) for the 
most general Hamiltonian that belongs to the osp(l/2. R) superalgebra with time-dependent 
coefficients, 

H ( t )  = W)Ko + fi(W+ + f ; ( t ) K -  + fz (W+ + f;WF-. (41) 
This Hamiltonian is useful in quantum physics. In fact, by using the boson realization 

(42) 

of the osp(l/2, R) generators, one can express the above Hamiltonian as 

H ( t )  = iA(t)atu + &fj ( t )a t2  + i f ; ( t ) a 2  + $ 2 ~ ~  + if;. + +A@) 
which is the most general coherencepreserving Hamiltonian in quantum optics. 

X ( a ,  p )  = iA(t)[sinh2r +0101*cosh2r+2Re(ol*~e'~)sinhrcoshr + $1 
For the Hamiltonian (41), we have 

+Re(f~(t)[01~e-'~sinh'r +or*'cosh'r + (1 +2or01*)sinhrcoshre-'~]} 
+ Re[fz(t)(m* coshr + me-'' sinhr)]. (43) 

In the derivation of the above equation, we have used the following mean values: 

sinh2 2r + (1 + 201a*)e-" sinh 2r cosh 2r] 
(olsIK+lorB) = (orsIK-l@)' 

= i [ d 2  cosh' 2r + (44) 

(OlslKolOrS) = 4 -!- $ [ ( I +  aa*) sinh' 2r + cm*coshZ 2r 
+ 2Re(or2e-") sinh2r cosh2rI 

(orSIF+lorB) = (OrBIF-lap)* = f(or*cosh2r +ore-"sinh2r). 
It follows from equation (43) that 

(45) 

(46) 

- = L  " ,A(or* cosh2r+201e-~sinhr coshr)+Za* Re(f,e-")sinhr coshr+orfie-2'8sinhZr aff 
+cif: cosh' r + if2e-" sinhr + if; coshr (47) 

_ = _  ax :A(o!cosh2r+2or*e'Bsinhrcoshr)+2orRe(fie-'B)sinhrcoshr +cr*f~eZiBsinh2r 
aa* 

ax - = A[sinh r cosh r + Re(a*'e'') cosh 2rl + Re[2(01** + a'e-m)fi sinh r coshr ar 

ax 
ae 

+a* f l  cosh'r + f ;g0 sinhr + i f icoshr  (48) 

+ f l ( 1  + 20101')e-'~ cosh 2r + arfze-" coshr + u*fz sinh r ]  (49) 

- = A Im(ry2e-") sinhr coshr + Im[cif# sinh r + 2aZfle-'28 sinh' r 

+ (1 +~01*)f ie- '~sinhrcoshr] .  (50) 
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Substituting (47)-(50) into (33)-(36), one can obtain the classical equations of motion 
of the system governed by the Hamiltonian (41). Obviously, these classical equations of 
motion are complicated nonlinear differential equations. 

In conclusion we have introduced a path integral formalism in the representation of new 
Css for the Lie superalgebra and derived the classical equations of motion for the system 
in which time evolution was driven by a coherencepreserving Hamiltonian. It has been 
shown that these classical equations of motion are highly nonlinear, and their forms follow 
directly from the fact that the  ss are constructed from a Lie superalgebra. The classical 
equations of motion for systems associated with the Glauber CSs and su(1,I) css from 
boson realization can be obtained as special cases of the osp(l/2, R) formulation. These 
show that it is possible to apply the results obtained in this letter to some problems in 
quantum mechanics and quantum optics. 

This research was supported by the National Natural Science Foundation of China. 
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